Etiketter

måndag 30 januari 2017

K-vitamiinista ja luuston terveydestä 1996

2017-01-30. Tehdessäni K-vitamiiniprojektiani 200-2001 aikaan dietetiikan kurssilla Göteborgin yliopistossa löysin lähdehaussa Shearer et al. artikkelin, joka minusta on aiheellinen vielä nyt 2017 ottaa esiin ja asetan sen luustoblogiini. Ollaanhan nyt jo tultu K-vitamiinin indikaatioalueitten selvittelyssä vakuuttuneeksi sen osuudesta luuston terveyteen ja kansallisesti korjattu ravintoa K- vitamiininkin luonnollista saantia suosivammaksi ja käytetään myös sellaista ravintoa, joka pitää suolistoflooran kunnossa.
Aihe Shearer MJ et al. Vitamiini K:n kemia, ravintolähteet, kudosjakauma ja aineenvaihdunta erityisesti viitaten luustoterveyteen. 1996.
LÄHDE: Shearer MJ1, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health.J Nutr. 1996 Apr;126(4 Suppl):1181S-6S.
Tiivistelmä (Suomennosta) Abstract


K-vitamiini esiintyy luonnossa yhdistesarjoina, joille on yhteistä 2-metyyli-1,4- naftokinonirengas tuma. ja eroavuutena on renkaan 3- asemassa sijaitsevissa isoprenoidirakenteisissa sivuketjuissa.
Näissä sivuketjuissa on kasvien K-vitamiinilla fytyylisivuketju, joilloin K-vitamiinia sanotaan fyllokinoniksi ja se merkataan K1- muodoksi. Sitten on bakteerien syntetisoimia K-vitamiineja ja ne ovat menakinoneja, merkataan K2- muodoiksi (MK-n) Sivuketjut ovat multiprenyylejä, joten kaksoisidoksia on runsaasti.
  • Vitamin K occurs in nature as a series of compounds with a common 2-methyl- 1,4 naphthoquinone nucleus and differing isoprenoid side chains at the 3 position. They comprise a single major plant form, phylloquinone with a phytyl side chain and a family of bacterially synthesized menaquinones (MKs) with multiprenyl side chains.
Ihmisen pääasiallinen K-vitamiinin lähde on fyllokinoni (K1) ja sitä on eniten vihreissä, lehtevissä vihanneksissa ja tietyissä kasvisöljyissä ( soijaöljyssä, rypsiöljyssä ja oliiviöljyssä). Vuoden 1996 aikaan oli saatu analysoitua kromatografisesti elintarvikkeiden fyllokinoneja joista oli jo laaja tietue.
  • The major dietary source to humans is phylloquinone for which the chief food contributors are green, leafy vegetables followed by certain vegetable oils (soybean, rapeseed and olive oils). Recent analyses by high pressure liquid chromatography are now providing a wide-ranging database of phylloquinone in foods.
Menakinoneja on kohtalaisia määriä vain harvoissa elintarvikkeissa kuten juustoissa (MK-8­ ja MK-9. Numero merkitsee isopreeniyksiköiden määrää) . Suurempaa menakinonien kirjoa syntetisoituu mikroflooran ansiosta suolistossa ja lie mahdollista että niitten imeytymisestä muodostuu maksankin K-vitamiinivaraston suurin osa- (arveltiin 1996 aikaan)-; erityisesti pitkiä menakinoneja , kokoja MK-10- MK-13 syntetisoivat eräät Bacteroides- suvut. Ei tiedetty ( 1996 aikaan) missä suoliston kohdassa mikrofrlooran menakinonit imeytyvät , mutta melkoisia pitoisuuksia on todettu terminaalisessa ileumissa, jossa sappisuolojen välittämä absorptoituminen olisi mahdollista.
  • Menaquinones are found in moderate concentrations in only a few foods such as cheeses (MK-8 and MK-9). A wider spectrum of MKs is synthesized by the gut microflora, and their intestinal absorption probably accounts for most of the hepatic stores, particularly those with very long side chains (MKs-10--13) synthesized by members of the genus Bacteroides. The site of absorption of floral MKs is not known, but reasonable concentrations are found in the terminal ileum where bile salt-mediated absorption is possible.
Sekä fyllokinonit että menakinonit ovat bioaktiivisia maksassa tapahtuvassa gamma-karboksylaatiossa, mutta pitkäketjuisia menakinoneja imeytyy huonommin. Maksan K-vitamiinivarastot ovat jokseenkin pieniä ja käsittävät lähinnä MK7- MK-13 tyyppejä ( pitkän sivuketjun omaavia). Fyllokinoonia on maksan K-vitamiinivarastosta noin 10% ja se on labiilia ja sen vaihtuvuus on nopeampaa kuin menakinonien.
  • Both phylloquinone and menaquinones are bioactive in hepatic gamma-carboxylation but long-chain MKs are less well absorbed. Liver stores of vitamin K are relatively small and predominantly MKs-7--13. The hepatic reserves of phylloquinone (approximately 10% of the total) are labile and turn over at a faster rate than menaquinones.
Sekä hohkaluu että kuoriluu näyttävät sisältävän melkoisia pitoisuuksia sekä fyllokinonia että menakinoneja. Suurin osa ( lähes 50- 70 %) fyllokinonin päivittäisessä ruoassa saadustqa määrästä menetetään kuitenkin kehon erityksen kautta, minkä takia painottuu sen jatkuvan ravintoperäisen saannin tarve jotta kudosreservit pysyvät yllä.
  • Trabecular and cortical bone appear to contain substantial concentrations of both phylloquinone and menaquinones. A majority (approximately 60-70%) of the daily dietary intake of phylloquinone is lost to the body by excretion, which emphasizes the need for a continuous dietary supply to maintain tissue reserves.
PMID:
8642453
[PubMed - indexed for MEDLINE]
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shearer%20MJ%5BAuthor%5D&cauthor=true&cauthor_uid=8642453
MJ Shearer  1996: Vitamin K1 concentration in serum is linked to vitamin K status of bone. The bone protein osteocalcin tends to be less completely carboxylated in people with low vitamin K concentrations in serum. Many hemodialysis patients with a history of bone fractures have indications of poor vitamin K status. The same patients also appear to have a greatly increased prospective bone fracture risk.
MJ Shearer 2004:  Vitamin K is well known for its role in the synthesis of a number of blood coagulation factors. During recent years vitamin K-dependent proteins were discovered to be of vital importance for bone and vascular health. Recommendations for dietary vitamin K intake have been made on the basis of the hepatic requirements for the synthesis of blood coagulation factors. Accumulating evidence suggests that the requirements for other functions than blood coagulation may be higher. This paper is the result of a closed workshop (Paris, November 2002) in which a number of European vitamin K experts reviewed the available data and formulated their standpoint with respect to recommended dietary vitamin K intake and the use of vitamin K-containing supplements.
 MJ Shearer 2012: In 2001, the US Food and Nutrition Board concluded that there were insufficient data with which to establish a RDA for vitamin K, in large part because of a lack of robust endpoints that reflected adequacy of intake. Knowledge of the relative bioavailability of multiple vitamin K forms was also poor. Since then, stable isotope methodologies have been applied to the assessment of the bioavailability of the major dietary form of vitamin K in its free state and when incorporated into a plant matrix. There is a need for stable isotope studies with enhanced sensitivity to expand knowledge of the bioavailability, absorption, disposition, and metabolism of different molecular forms of vitamin K. Another area for future research stems from evidence that common polymorphisms or haplotypes in certain key genes implicated in vitamin K metabolism might affect nutritional requirements. Thus far, much of this evidence is indirect via effects on warfarin dose requirements. In terms of clinical endpoints, vitamin K deficiency in early infancy continues to be a leading cause of intracranial bleeding even in developed countries and the reasons for its higher prevalence in certain Asian countries has not been solved. There is universal consensus for the need for vitamin K prophylaxis in newborns, but the effectiveness of any vitamin K prophylactic regimen needs to be based on sound nutritional principles. In contrast, there is still a lack of suitable biomarkers or clinical endpoints that can be used to determine vitamin K requirements among adults.

Inga kommentarer:

Skicka en kommentar