Materials (Basel). 2016 Jun 3;9(6). pii: E443. doi: 10.3390/ma9060443.
Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage.
Suomennosta abstraktista.
Hyaliinirusto on kestävää materiaalia, joka toimii nivelten liikkeissä voiteluaineena. Koska rusto (cartilago) on avaskulaarista- siinä ei ole verisuonia- sen itsestääntoipumiskyky on huono ja tästä nivelen korjaantuminen ennalleen on haasteellista. Jos vaurio on paha, joudutaan rustoa korvamaan. Tällä hetkellä 2016 ei vielä kyetä replikoimaan hyaliinirustoa ja sen takia käytetään vaihtoehtoismateriaaleja, joiden ominaisuudet ovat huomattavan erilaisia. Tästa johtuen tulee epätoivottuja sivuvaikutuksia kuten riittämätön voiteluominaisuus, kulutuksesta muodostuvaa debristä, vastapäisen ruston kulumaa ja ympäröivien kudosten heikentymää. On tullut ilmeiseksi, että rustonkorjauskirurgian tarve on lisääntymään päin ja sentakia tarvitaan parempia rustonkaltaisuuksia omaavia aineita, jotka myös antavat tukea ympärillä olevalle materiaalille sen tyyppifunktiossaan.
Tutkijat esittävät tässä artikkelissaan lyhyen yleiskatsauksen hyaliiniruston rakenteesta ja ominaisuuksista sekä nykyisistä rustonkorjausmetodeista. He myös valaisevat muatamia vaihtoehtoisia kehitteillä olevia materiaaleja, joilla on mahdollisuuksia toimia korjausmenetelminä . Sitten seruaa katsaus vahvojen hydrogeelien kehittelystä. Erityisesti kaksoisverkostuneet hydrogeelit ovat lupaava korvausmateriaali, jonka fysikaalisia ominaisuuksia jatkuvasti kohennetaan. Nämä hydrogeelit yltävät lähemmäksi hyaliiniruston voiman ja vahvuuden replikoitumista tarjoten samalla myös ovallisen voitelun. Yhteenvedossa valaistaan useita eri metodeja, joilla integroidaan korvaavia materiaaleja luonnolliseen niveleen varmistamaan stabiliteettia ja optimaalista toimintaa.
Abstract
Hyaline
cartilage is a strong durable material that lubricates joint movement.
Due to its avascular structure, cartilage has a poor self-healing
ability, thus, a challenge in joint recovery. When severely damaged,
cartilage may need to be replaced. However, currently we are unable to
replicate the hyaline cartilage, and as such, alternative materials with
considerably different properties are used. This results in undesirable
side effects, including inadequate lubrication, wear debris, wear of
the opposing articular cartilage, and weakening of the surrounding
tissue. With the number of surgeries for cartilage repair increasing, a
need for materials that can better mimic cartilage, and support the
surrounding material in its typical function, is becoming evident.
Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.
Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.
KEYWORDS:
articular cartilage; double network; hydrogels; implant; self-healing
articular cartilage; double network; hydrogels; implant; self-healing
PMID: 28773566 PMCID: PMC5456752 DOI:10.3390/ma9060443 Free PMC Article
- Uudempi artikkeli vuoaelta 2019.
- Selostetaan kaksoisverkoston/DN, Double Net) muodosotumista.
- iomacromolecules. 2019 Apr 22. doi: 10.1021/acs.biomac.9b00237. [Epub ahead of print]
Double Network Hydrogels that Mimic the Modulus, Strength and Lubricity of Cartilage.
Abstract
The development of a hydrogel-based synthetic cartilage has the potential to overcome many limitations of current chondral defect treatments. Many efforts have attempted to replicate the unique characteristics of cartilage in hydrogels, but none simultaneously achieved high modulus, strength and toughness while maintaining the necessary hydration required for lubricity. Herein, double network (DN) hydrogels, composed of a poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) 1st network and a poly(N-isopropyl-acrylamide-co-acrylamide) [P(NIPAAm-co-AAm)] 2nd network, are evaluated as a potential off-the-shelf material for cartilage replacement. While predominantly used for its thermosensitivity, PNIPAAm is employed to achieve superior mechanical properties and its thermal transition temperature tuned above the physiological range. These PNIPAAm-based DNs demonstrate a 50-fold increase in compressive strength (~25 MPa, similar to cartilage) compared to traditional single network hydrogels while also achieving a cartilage-like modulus (~1 MPa) and hydration (~80%). By directly comparing to healthy cartilage (porcine), these hydrogels are confirmed not only to parallel the strength, modulus and hydration of native articular cartilage but also exhibit a 50% lower coefficient of friction (COF). The exceptional cartilage-like properties of the PAMPS/P(NIPAAm-co-AAm) DN hydrogels makes them candidates for synthetic cartilage grafts for chondral defect repair, even in load-bearing regions of the body.- PMID:
- 31009565
- DOI:
- 10.1021/acs.biomac.9b00237